Django Multiple Database Branch

“A How-To Guide”

written by

Carole Zieler

Introduction

This guide is intended to aid programmers who intend to use the Django Multiple Database branch with legacy database systems. This guide assumes that the programmer will be using MySQL for databases, and is basically a documented step-by-step process of how I have created my first Django website. If there are any better ways to do anything mentioned below, please feel free to email me, and I will modify the document as follows. All of the information that follows has been obtained through trial and error processes, as well as email discussions with Jason Pellerin (the Multiple Database Branch developer). Since this project is ever-evolving, the information may become out-dated, but I will attempt to update this document if others give me feedback on it.

The Guide

1. Get The Code

The multiple database version of Django is currently a branch of the main project. You'll need to install subversion if you do not currently have it.

Checkout the multiple database version of Django with the following command (do this from the directory you would like the code downloaded to):

svn co http://code.djangoproject.com/svn/django/branches/multiple-db-support

2. Install Required Applications

The following are required to run Django: Apache 2.x, mysqldb (if you plan to use MySQL), mod_python

3. Install Django

After performing the above checkout, you should have a folder named multiple-db-support on your machine in the directory you ran the checkout command from. You will either need to become root, or sudo capability on the machine you are about to install on.

Run the following command (remove sudo if you are root):

sudo python setup.py install

**Note: The setup.py script will attempt to install a setuptools library, if this fails (you need Internet connectivity), you will need to install setuptools separately, and then run the setup script again.

4. Create Your Project

You will now need to create a 'project'. Change into the directory where you would like the files for your project to reside, and run the following command, replacing 'mysite' with the name you would like for your project:

django-admin.py startproject mysite

**Note: If your system does not find django-admin.py script, you can either create a symlink to it, or append the front of the line with the full path to the script.

5. Testing The Development Server

Django comes with its own development server. It can also be run under Apache 2.x (which will be discussed at a later time). The development server defaults to http://127.0.0.1:8000/, but can be easily changed.

To run the Django Development Server on it's default address and port, go to the directory that you created your project in (whatever you replaced 'mysite' with), then type the following:

python manage.py runserver

If you would like to change the port, simply append the port to the end of the command:

python manage.py runserver 8080

If you have the need to change the entire address which the server runs at, you may also do so by appending this to the end of the command:

python manage.py runserver 192.168.1.70:8000

6. Create Your Application

You must now create an application to go under your project. The project contains everything, including settings files. A project can contain multiple applications. To create your application, decide what you want to call it, and run the following command from the project directory that was created above, replacing 'myapplication with the correct name:

python manage.py startapp myapplication

This will create a folder name with the name you selected for your project, along with some other files.

7. The Project Settings File & Your Legacy Databases

Go to your project directory (whatever you substituted 'mysite' with), and open the settings.py file. By default the settings file only contains the setting entries for a single database:

DATABASE_ENGINE = '' # 'postgresql', 'mysql', 'sqlite3' or 'ado_mssql'.

DATABASE_NAME = '' # Or path to database file if using sqlite3.

DATABASE_USER = '' # Not used with sqlite3.

DATABASE_PASSWORD = '' # Not used with sqlite3.

DATABASE_HOST = ' ' # Set to empty string for localhost. Not used with sqlite3.

DATABASE_PORT = ''

Even though you are planning on using legacy databases, Django actually has some tables that it will create on it's own. Since this is the case, I created a separate database (I called it 'djangodb'), to house the Django data tables.... this isn't required, you could always have these tables in your legacy databases, but I myself thought it would be better to keep the Django tables separated. I have also chosen to go ahead and set the 'djangodb' as the main database, again this is not required, I just chose to do it this way.

Django will create its default tables for you. All that you need to do, is:

· Go to your MySQL server, and type: create database djangodb

· Modify your Settings.py DATABASE_ENGINE to be 'mysql'

· Modify your DATABASE_NAME setting to 'djangodb'

· Modify your DATABASE_USER to contain your database user name.

· Modify your DATABASE_PASSWORD to contain this user's password.

· Modify your DATABASE_HOST to contain the host name

· If a port is necessary, enter the port.

· From your project directory type the command: python manage.py syncdb

That's it, your 'djangodb' should now be created on your server, and this is where default Django information, such as session data will be stored.

Now that you have your main database created, you'll need to add the entries for each of your legacy databases. (If you are not using legacy databases, skip this and the next section, and look at the djangoproject.com site, to learn how to create data models, and generate databases from them.)

You will need to add a section OTHER_DATABASES in your settings.py file for your legacy databases in the following format, having an entry for each of your databases inside of this section:

OTHER_DATABASES = {

 'databaseonename': {

 'DATABASE_NAME': 'databaseonename',

 'DATABASE_USER': 'yourdbuser',

 'DATABASE_PASSWORD': 'yourdbpass',

 'MODELS': ['databaseonename']

 },

 'databasetwoname': {

 'DATABASE_NAME': 'databasetwoname',

 'DATABASE_USER': 'yourdbuser',

 'DATABASE_PASSWORD': 'yourdbpass',

 'MODELS': ['databasetwoname']

 },

 'databasethreename':{

 'DATABASE_NAME': 'databasethreename',

 'DATABASE_USER': 'yourdbuser',

 'DATABASE_PASSWORD': 'yourdbpass',

 'MODELS':['databasethreename']

 }

 }

For each legacy database, you'll also need to add a line in the INSTALLED_APPS section of the settings.py file.... below is a sample for the above databases, again substitute 'myproject' and 'myapplication' with the names you have chosen. Also, go ahead and add the entry of myproject.myapplciation which will be needed for the Django server to be able to see your project.

INSTALLED_APPS = (

 'django.contrib.auth',

 'django.contrib.contenttypes',

 'django.contrib.sessions',

 'django.contrib.sites',

 'django.contrib.admin',

 'myproject.myapplication',

 'myproject .myapplication.databaseonename',

 'myproject .myapplication.databasetwoname ',

 'myproject .myapplication.databasethreename ',

)

8. Generating Classes For Your Legacy Databases – Using 'inspectdb'

I have submitted a ticket to the Django project, as this process is quite cumbersome, but as far as I know, it is the only way to auto-generate class code for each of your legacy databases. Django has a tool for generating your class code for your databases, but it currently is geared toward projects with a single database... I was able to get around this, by temporarily modifying the settings.py DATABASE_NAME entry and running the tool. I did this once for each database, then reverted it back to its initial setting of 'djangodb'. So basically for each database I did the following:

· Modify the main DATABASE_NAME entry to 'databaseonename'

· From your project directory run the command: python manage.py inspectdb > models.py

· Create a directory: mkdir 'databaseonename'

· Copy the newly created file to this directory: cp models.py databaseonename

· Remove the file from the project directory: rm models.py

· Change into the new directory: cd databaseonename

· Create a blank file named __init__.py (this makes this folder a python module)

Once you've done this for each of your legacy databases, be sure to reset the DATABASE_NAME setting to 'djangodb'.

9. “Patching” up the Auto-Created Database Files

The inspectdb tool is a great little utility, but it isn't perfect. Below are some notes on what I have had to do to my files that were generated, and most likely you will too.

· Auto Incrementing Primary Key Fields - Any primary key field that you have set to Auto Increment in MySQL, you will have to make modifications to in each of your directories (databaseonename,databasetwoname, etc) models.py files, as the inspectdb script does not correctly define them. Go to each of these property definitions, in each class, and modify the field from:

your_id_field = models.IntegerField(primary_key=True)

to:

your_id_field = models.AutoField(primary_key=True)

Your views will work initially without this change, but you would run into issues when creating new objects. If the field was an IntegerField, and not an AutoField, Django would not automatically fetch the new 'id' and populate this field after creating and saving a new object.

· Foreign Key Fields - Any field that is a foreign key, will incorrectly be defined as an IntegerField. If for instance you have the following:

class Address(models.Model):

address_id = models.AutoField(primary_key=True)

street = models.CharField(blank=True,maxLength=60)

class User (models.Model):

user_id=models.AutoField(primary_key=True)

address_id = models.IntegerField(null=False)

You will need to change it to the following:

class Address(models.Model):

address_id = models.AutoField(primary_key=True)

street = models.CharField(blank=True,maxLength=60)

class User (models.Model):

user_id=models.AutoField(primary_key=True)

address = models.ForeignKey(Address)

Notice the changes:

· address_id has been changed to address (errors will occur if you do not do this)

· models.IntegerField for address has been changed to models.ForeignKey

· We have placed the Address class inside of the parenthesis. (If this key were to be to another user (perhaps if we were defining a parent) we would say models.ForeignKey(“self”) instead of the class name)

10. Creating Views

If you don't know what a 'view' is... you probably need to check out djangoproject.com ... and read the section on views. This section is just to help you figure out where to put your code for views, and how to import your database files so that you can access them.... for more information on the specifics of views... please see the djangoproject.com website, as they have been documented in great detail there.

· Under your application directory, create a directory named 'views'.

· Go to your project directory, and open you settings.py file

· In the INSTALLED_APPS section, add the line (again replacing myproject and myapplication with the appropriate names) myproject.myapplications.views

· Go to your newly created 'views' directory, create an empty file '__init__.py'

· Now create a file to house your view code (call it what you want... I had some views that were for storing files in a company information table...so I called the file companyviews.py).

· Import your database classes by using the following line at the top of your view code:

from myapplication.databaseonename.models import * (replacing myapplication and databaseonename with the appropriate names)

· You now need to define a function which will be called for your view as in the example below:

from myapplication.companydatabase.models.import *

def rendercompany(request):

 all_companies = Company.objects.all() # company is a class in my company database

 return render_to_response('viewcompanies.html', {'all_companies': all_companies}) # use html template/pass companies to it

· Now that you've written this code... you'll have to make an entry in the urls.py file. This file resides in your project directory. The urls.py syntax is documented on the djangoproject.com site, but below is the line that you would need to add to access the function in the sample provided:

(r'^myapplication/companies', 'myproject.myapplication.views.companyviews.rendercompany'),

· After adding this line, you should be able to go to the django server via a web browser and type in:

http://127.0.0.1:8000/myapplication/companies (if you modified the port or address, use that instead)

· You'll need to do the above for each view you create.

11. HTML Template Files

The above view sample was calling an HTML template file. If your not familiar with HTML template files, you can look at the djangoproject.com site for all of the different options for embedding python variables into the HTML. The basic things you need to do to begin using template files are:

· Create a directory on your machine to store the template files (this directory can be either under your project directory...or you can choose to place it elsewhere)

· Open your settings.py file in your project directory.

· Locate the TEMPLATE_DIRS section

· Add a string in quotes with the path to this directory.

After that, simply place the *.html files in the specified directory, and follow the djangoproject.com documentation on using HTML templates. Be sure to check out template inheritance, as this is a pretty nice feature!

12. Using CSS/Javascript/Graphics Files

The Django documentation recommends hosting static files outside of your project (check the site for more info on why). In other words, create a folder through Apache to house all of your static files... and then in your Django files, call them from whatever path that is.

