Version 6 (modified by sangho, 4 years ago) (diff)


.. _intro-tutorial03:

Writing your first Django app, part 3
세번째 : views 작성하기
This tutorial begins where :ref:`Tutorial 2 <intro-tutorial02>` left off. We're
continuing the Web-poll application and will focus on creating the public
interface -- "views."
이 페이지는 "views"라는 public interface에 대해 중점을 두고 Web-poll 어플리케이션을 다룹니다.
A view is a "type" of Web page in your Django application that generally serves
a specific function and has a specific template. For example, in a weblog
application, you might have the following views:
뷰(view)는 장고 어플리케이션에서 구체적인 기능을 수행하고, 특정한 템플릿을 가지고 있기도 한 웹페이지의 "형태"중 한가지 입니다. 예를들어, 만약 당신이 블로그 어플리케이션을 만든다면, 아래와 같은 뷰를 사용해야 할 것입니다.
    * Blog homepage -- displays the latest few entries.

    * Entry "detail" page -- permalink page for a single entry.

    * Year-based archive page -- displays all months with entries in the
      given year.

    * Month-based archive page -- displays all days with entries in the
      given month.

    * Day-based archive page -- displays all entries in the given day.

    * Comment action -- handles posting comments to a given entry.
    * 블로그 홈페이지 -- 최근에 올라온 글 몇개를 보여줍니다.

    * 글 "자세히" 페이지 -- 한 개의 글에 대한 바로 가기 페이지

    * 1년 기준 문서 페이지 -- 1년 동안의 모든 글을 보여줍니다.

    * 한달 기준 문서 페이지 -- 한달 동안의 모든 글을 보여줍니다.

    * 하루 기준 문서 페이지 -- 하루 동안의 모든 글을 보여줍니다.

    * 댓글 처리 -- 글에 대한 댓글을 작성하는 작업을 합니다.
In our poll application, we'll have the following four views:
우리의 poll 어플리케이션에서는 아래의 네가지 뷰를 쓸 것 입니다.
    * Poll "archive" page -- displays the latest few polls.

    * Poll "detail" page -- displays a poll question, with no results but
      with a form to vote.

    * Poll "results" page -- displays results for a particular poll.

    * Vote action -- handles voting for a particular choice in a particular
    * Poll "문서" 페이지 -- 최근 몇개의 poll들을 보여줍니다.

    * Poll "자세히" 페이지 -- poll의 제목과, 투표를 하기위한 폼을 보여줍니다. (결과는 없음)

    * Poll "결과" 페이지 -- 특정한 poll의 결과를 보여줍니다.

    * 투표 처리 -- 특정한 poll에 대한 특정한 선택에 대한 투표를 처리합니다.
In Django, each view is represented by a simple Python function.
장고에서 각각의 뷰는 간단한 파이썬 함수로 표현됩니다.
Design your URLs
URL 디자인 하기
The first step of writing views is to design your URL structure. You do this by
creating a Python module, called a URLconf. URLconfs are how Django associates
a given URL with given Python code.
뷰를 작성하기 위한 첫 번째 단계는 URLconf라는 파이썬 모듈을 작성해서 URL 구조를 설계하는 것입니다.
URLconf는 특정 URL을 그에 주어진 파이썬 코드로 연결시킵니다.
When a user requests a Django-powered page, the system looks at the
:setting:`ROOT_URLCONF` setting, which contains a string in Python dotted
syntax. Django loads that module and looks for a module-level variable called
``urlpatterns``, which is a sequence of tuples in the following format::
유저가 장고기반 페이지를 요청하면 시스템은 Python dotted 문법의 문자열을 포함한 :setting:`ROOT_URLCONF` 세팅을 불러들이고,
아래와 같은 튜플 형태인 ``urlpatterns`` 라는 모듈레벨의 변수를 찾습니다.::
    (regular expression, Python callback function [, optional dictionary])
    (정규표현식, 파이썬 콜백 함수, [, 부가적인 사전자료형])
Django starts at the first regular expression and makes its way down the list,
comparing the requested URL against each regular expression until it finds one
that matches.
장고는 요청된 URL을 나타내는 정규표현식이 나올 때 까지 첫 번째 정규표현식부터 아래로 쭉 훑습니다.
When it finds a match, Django calls the Python callback function, with an
:class:`~django.http.HttpRequest` object as the first argument, any "captured"
values from the regular expression as keyword arguments, and, optionally,
arbitrary keyword arguments from the dictionary (an optional third item in the
적합한 정규표현식을 찾았다면, 장고는 :class:`~django.http.HttpRequest`를 첫번째 인자로 하는 파이썬 콜백 함수를 호출합니다.
다른 "걸려진" 값들도 키워드 인자로 전달되고, 위의 사전자료형 (세번째로 받은 튜플값)에서도 인자가 전달됩니다.
For more on :class:`~django.http.HttpRequest` objects, see the
:ref:`ref-request-response`. For more details on URLconfs, see the
:class:`~django.http.HttpRequest`에 대한 더 많은정보는 :ref:`ref-request-response`이곳에서, URLconfs에 관한 정보는 :ref:`topics-http-urls`이 곳을 참고 하세요
When you ran `` startproject mysite`` at the beginning of
Tutorial 1, it created a default URLconf in ``mysite/``. It also
automatically set your :setting:`ROOT_URLCONF` setting (in ````) to
point at that file::

    ROOT_URLCONF = 'mysite.urls'

Time for an example. Edit ``mysite/`` so it looks like this::

    from django.conf.urls.defaults import *

    from django.contrib import admin

    urlpatterns = patterns('',
        (r'^polls/$', 'mysite.polls.views.index'),
        (r'^polls/(?P<poll_id>\d+)/$', 'mysite.polls.views.detail'),
        (r'^polls/(?P<poll_id>\d+)/results/$', 'mysite.polls.views.results'),
        (r'^polls/(?P<poll_id>\d+)/vote/$', ''),
        (r'^admin/', include(,

This is worth a review. When somebody requests a page from your Web site -- say,
"/polls/23/", Django will load this Python module, because it's pointed to by
the :setting:`ROOT_URLCONF` setting. It finds the variable named ``urlpatterns``
and traverses the regular expressions in order. When it finds a regular
expression that matches -- ``r'^polls/(?P<poll_id>\d+)/$'`` -- it loads the
function ``detail()`` from ``mysite/polls/``. Finally,
it calls that ``detail()`` function like so::

    detail(request=<HttpRequest object>, poll_id='23')

The ``poll_id='23'`` part comes from ``(?P<poll_id>\d+)``. Using parenthesis
around a pattern "captures" the text matched by that pattern and sends it as an
argument to the view function; the ``?P<poll_id>`` defines the name that will be
used to identify the matched pattern; and ``\d+`` is a regular expression to
match a sequence of digits (i.e., a number).

Because the URL patterns are regular expressions, there really is no limit on
what you can do with them. And there's no need to add URL cruft such as ``.php``
-- unless you have a sick sense of humor, in which case you can do something
like this::

    (r'^polls/latest\.php$', 'mysite.polls.views.index'),

But, don't do that. It's silly.

Note that these regular expressions do not search GET and POST parameters, or
the domain name. For example, in a request to ````,
the URLconf will look for ``myapp/``. In a request to
````, the URLconf will look for ``myapp/``.

If you need help with regular expressions, see `Wikipedia's entry`_ and the
`Python documentation`_. Also, the O'Reilly book "Mastering Regular Expressions"
by Jeffrey Friedl is fantastic.

Finally, a performance note: these regular expressions are compiled the first
time the URLconf module is loaded. They're super fast.

.. _Wikipedia's entry:
.. _Python documentation:

Write your first view

Well, we haven't created any views yet -- we just have the URLconf. But let's
make sure Django is following the URLconf properly.

Fire up the Django development Web server:

.. code-block:: bash

    python runserver

Now go to "http://localhost:8000/polls/" on your domain in your Web browser.
You should get a pleasantly-colored error page with the following message::

    ViewDoesNotExist at /polls/

    Tried index in module mysite.polls.views. Error was: 'module'
    object has no attribute 'index'

This error happened because you haven't written a function ``index()`` in the
module ``mysite/polls/``.

Try "/polls/23/", "/polls/23/results/" and "/polls/23/vote/". The error
messages tell you which view Django tried (and failed to find, because you
haven't written any views yet).

Time to write the first view. Open the file ``mysite/polls/``
and put the following Python code in it::

    from django.http import HttpResponse

    def index(request):
        return HttpResponse("Hello, world. You're at the poll index.")

This is the simplest view possible. Go to "/polls/" in your browser, and you
should see your text.

Now lets add a few more views. These views are slightly different, because
they take an argument (which, remember, is passed in from whatever was
captured by the regular expression in the URLconf)::

    def detail(request, poll_id):
        return HttpResponse("You're looking at poll %s." % poll_id)

    def results(request, poll_id):
        return HttpResponse("You're looking at the results of poll %s." % poll_id)

    def vote(request, poll_id):
        return HttpResponse("You're voting on poll %s." % poll_id)

Take a look in your browser, at "/polls/34/". It'll run the `detail()` method
and display whatever ID you provide in the URL. Try "/polls/34/results/" and
"/polls/34/vote/" too -- these will display the placeholder results and voting

Write views that actually do something

Each view is responsible for doing one of two things: Returning an
:class:`~django.http.HttpResponse` object containing the content for the
requested page, or raising an exception such as :exc:`~django.http.Http404`. The
rest is up to you.

Your view can read records from a database, or not. It can use a template
system such as Django's -- or a third-party Python template system -- or not.
It can generate a PDF file, output XML, create a ZIP file on the fly, anything
you want, using whatever Python libraries you want.

All Django wants is that :class:`~django.http.HttpResponse`. Or an exception.

Because it's convenient, let's use Django's own database API, which we covered
in :ref:`Tutorial 1 <intro-tutorial01>`. Here's one stab at the ``index()``
view, which displays the latest 5 poll questions in the system, separated by
commas, according to publication date::

    from mysite.polls.models import Poll
    from django.http import HttpResponse

    def index(request):
        latest_poll_list = Poll.objects.all().order_by('-pub_date')[:5]
        output = ', '.join([p.question for p in latest_poll_list])
        return HttpResponse(output)

There's a problem here, though: The page's design is hard-coded in the view. If
you want to change the way the page looks, you'll have to edit this Python code.
So let's use Django's template system to separate the design from Python::

    from django.template import Context, loader
    from mysite.polls.models import Poll
    from django.http import HttpResponse

    def index(request):
        latest_poll_list = Poll.objects.all().order_by('-pub_date')[:5]
        t = loader.get_template('polls/index.html')
        c = Context({
            'latest_poll_list': latest_poll_list,
        return HttpResponse(t.render(c))

That code loads the template called "polls/index.html" and passes it a context.
The context is a dictionary mapping template variable names to Python objects.

Reload the page. Now you'll see an error::

    TemplateDoesNotExist at /polls/

Ah. There's no template yet. First, create a directory, somewhere on your
filesystem, whose contents Django can access. (Django runs as whatever user your
server runs.) Don't put them under your document root, though. You probably
shouldn't make them public, just for security's sake.
Then edit :setting:`TEMPLATE_DIRS` in your ```` to tell Django where
it can find templates -- just as you did in the "Customize the admin look and
feel" section of Tutorial 2.

When you've done that, create a directory ``polls`` in your template directory.
Within that, create a file called ``index.html``. Note that our
``loader.get_template('polls/index.html')`` code from above maps to
"[template_directory]/polls/index.html" on the filesystem.

Put the following code in that template:

.. code-block:: html+django

    {% if latest_poll_list %}
        {% for poll in latest_poll_list %}
            <li>{{ poll.question }}</li>
        {% endfor %}
    {% else %}
        <p>No polls are available.</p>
    {% endif %}

Load the page in your Web browser, and you should see a bulleted-list
containing the "What's up" poll from Tutorial 1.

A shortcut: render_to_response()

It's a very common idiom to load a template, fill a context and return an
:class:`~django.http.HttpResponse` object with the result of the rendered
template. Django provides a shortcut. Here's the full ``index()`` view,

    from django.shortcuts import render_to_response
    from mysite.polls.models import Poll

    def index(request):
        latest_poll_list = Poll.objects.all().order_by('-pub_date')[:5]
        return render_to_response('polls/index.html', {'latest_poll_list': latest_poll_list})

Note that once we've done this in all these views, we no longer need to import
:mod:`~django.template.loader`, :class:`~django.template.Context` and

The :func:`~django.shortcuts.render_to_response` function takes a template name
as its first argument and a dictionary as its optional second argument. It
returns an :class:`~django.http.HttpResponse` object of the given template
rendered with the given context.

Raising 404

Now, let's tackle the poll detail view -- the page that displays the question
for a given poll. Here's the view::

    from django.http import Http404
    # ...
    def detail(request, poll_id):
            p = Poll.objects.get(pk=poll_id)
        except Poll.DoesNotExist:
            raise Http404
        return render_to_response('polls/detail.html', {'poll': p})

The new concept here: The view raises the :exc:`~django.http.Http404` exception
if a poll with the requested ID doesn't exist.

We'll discuss what you could put in that ``polls/detail.html`` template a bit
later, but if you'd like to quickly get the above example working, just::

    {{ poll }}

will get you started for now.

A shortcut: get_object_or_404()

It's a very common idiom to use :meth:`~django.db.models.QuerySet.get` and raise
:exc:`~django.http.Http404` if the object doesn't exist. Django provides a
shortcut. Here's the ``detail()`` view, rewritten::

    from django.shortcuts import render_to_response, get_object_or_404
    # ...
    def detail(request, poll_id):
        p = get_object_or_404(Poll, pk=poll_id)
        return render_to_response('polls/detail.html', {'poll': p})

The :func:`~django.shortcuts.get_object_or_404` function takes a Django model
as its first argument and an arbitrary number of keyword arguments, which it
passes to the module's :meth:`~django.db.models.QuerySet.get` function. It
raises :exc:`~django.http.Http404` if the object doesn't exist.

.. admonition:: Philosophy

    Why do we use a helper function :func:`~django.shortcuts.get_object_or_404`
    instead of automatically catching the
    :exc:`~django.core.exceptions.ObjectDoesNotExist` exceptions at a higher
    level, or having the model API raise :exc:`~django.http.Http404` instead of

    Because that would couple the model layer to the view layer. One of the
    foremost design goals of Django is to maintain loose coupling.

There's also a :func:`~django.shortcuts.get_list_or_404` function, which works
just as :func:`~django.shortcuts.get_object_or_404` -- except using
:meth:`~django.db.models.QuerySet.filter` instead of
:meth:`~django.db.models.QuerySet.get`. It raises :exc:`~django.http.Http404` if
the list is empty.

Write a 404 (page not found) view

When you raise :exc:`~django.http.Http404` from within a view, Django will load
a special view devoted to handling 404 errors. It finds it by looking for the
variable ``handler404``, which is a string in Python dotted syntax -- the same
format the normal URLconf callbacks use. A 404 view itself has nothing special:
It's just a normal view.

You normally won't have to bother with writing 404 views. By default, URLconfs
have the following line up top::

    from django.conf.urls.defaults import *

That takes care of setting ``handler404`` in the current module. As you can see
in ``django/conf/urls/``, ``handler404`` is set to
:func:`django.views.defaults.page_not_found` by default.

Four more things to note about 404 views:

    * If :setting:`DEBUG` is set to ``True`` (in your settings module) then your
      404 view will never be used (and thus the ``404.html`` template will never
      be rendered) because the traceback will be displayed instead.

    * The 404 view is also called if Django doesn't find a match after checking
      every regular expression in the URLconf.

    * If you don't define your own 404 view -- and simply use the default, which
      is recommended -- you still have one obligation: To create a ``404.html``
      template in the root of your template directory. The default 404 view will
      use that template for all 404 errors.

    * If :setting:`DEBUG` is set to ``False`` (in your settings module) and if
      you didn't create a ``404.html`` file, an ``Http500`` is raised instead.
      So remember to create a ``404.html``.

Write a 500 (server error) view

Similarly, URLconfs may define a ``handler500``, which points to a view to call
in case of server errors. Server errors happen when you have runtime errors in
view code.

Use the template system

Back to the ``detail()`` view for our poll application. Given the context
variable ``poll``, here's what the "polls/detail.html" template might look

.. code-block:: html+django

    <h1>{{ poll.question }}</h1>
    {% for choice in poll.choice_set.all %}
        <li>{{ choice.choice }}</li>
    {% endfor %}

The template system uses dot-lookup syntax to access variable attributes. In
the example of ``{{ poll.question }}``, first Django does a dictionary lookup
on the object ``poll``. Failing that, it tries attribute lookup -- which works,
in this case. If attribute lookup had failed, it would've tried calling the
method ``question()`` on the poll object.

Method-calling happens in the ``{% for %}`` loop: ``poll.choice_set.all`` is
interpreted as the Python code ``poll.choice_set.all()``, which returns an
iterable of Choice objects and is suitable for use in the ``{% for %}`` tag.

See the :ref:`template guide <topics-templates>` for more about templates.

Simplifying the URLconfs

Take some time to play around with the views and template system. As you edit
the URLconf, you may notice there's a fair bit of redundancy in it::

    urlpatterns = patterns('',
        (r'^polls/$', 'mysite.polls.views.index'),
        (r'^polls/(?P<poll_id>\d+)/$', 'mysite.polls.views.detail'),
        (r'^polls/(?P<poll_id>\d+)/results/$', 'mysite.polls.views.results'),
        (r'^polls/(?P<poll_id>\d+)/vote/$', ''),

Namely, ``mysite.polls.views`` is in every callback.

Because this is a common case, the URLconf framework provides a shortcut for
common prefixes. You can factor out the common prefixes and add them as the
first argument to :func:`~django.conf.urls.defaults.patterns`, like so::

    urlpatterns = patterns('mysite.polls.views',
        (r'^polls/$', 'index'),
        (r'^polls/(?P<poll_id>\d+)/$', 'detail'),
        (r'^polls/(?P<poll_id>\d+)/results/$', 'results'),
        (r'^polls/(?P<poll_id>\d+)/vote/$', 'vote'),

This is functionally identical to the previous formatting. It's just a bit

Decoupling the URLconfs

While we're at it, we should take the time to decouple our poll-app URLs from
our Django project configuration. Django apps are meant to be pluggable -- that
is, each particular app should be transferable to another Django installation
with minimal fuss.

Our poll app is pretty decoupled at this point, thanks to the strict directory
structure that ``python startapp`` created, but one part of it is
coupled to the Django settings: The URLconf.

We've been editing the URLs in ``mysite/``, but the URL design of an
app is specific to the app, not to the Django installation -- so let's move the
URLs within the app directory.

Copy the file ``mysite/`` to ``mysite/polls/``. Then, change
``mysite/`` to remove the poll-specific URLs and insert an

    # ...
    urlpatterns = patterns('',
        (r'^polls/', include('mysite.polls.urls')),
        # ...

:func:`~django.conf.urls.defaults.include`, simply, references another URLconf.
Note that the regular expression doesn't have a ``$`` (end-of-string match
character) but has the trailing slash. Whenever Django encounters
:func:`~django.conf.urls.defaults.include`, it chops off whatever part of the
URL matched up to that point and sends the remaining string to the included
URLconf for further processing.

Here's what happens if a user goes to "/polls/34/" in this system:

    * Django will find the match at ``'^polls/'``

    * Then, Django will strip off the matching text (``"polls/"``) and send the
      remaining text -- ``"34/"`` -- to the 'mysite.polls.urls' URLconf for
      further processing.

Now that we've decoupled that, we need to decouple the 'mysite.polls.urls'
URLconf by removing the leading "polls/" from each line, and removing the
lines registering the admin site::

    urlpatterns = patterns('mysite.polls.views',
        (r'^$', 'index'),
        (r'^(?P<poll_id>\d+)/$', 'detail'),
        (r'^(?P<poll_id>\d+)/results/$', 'results'),
        (r'^(?P<poll_id>\d+)/vote/$', 'vote'),

The idea behind :func:`~django.conf.urls.defaults.include` and URLconf
decoupling is to make it easy to plug-and-play URLs. Now that polls are in their
own URLconf, they can be placed under "/polls/", or under "/fun_polls/", or
under "/content/polls/", or any other URL root, and the app will still work.

All the poll app cares about is its relative URLs, not its absolute URLs.

When you're comfortable with writing views, read :ref:`part 4 of this tutorial
<intro-tutorial04>` to learn about simple form processing and generic views.