previous | up

Django v1.1 documentation

Authentication using LDAP

New in Django Development version.

Django includes an LDAP authentication backend to authenticate against any LDAP server. To enable,
add django.contrib.auth.contrib.ldap.backend.LDAPBackend to

AUTHENTICATION BACKENDS. LDAP configuration can be as simple as a single distinguished name
template, but there are many rich options for working with User objects, groups, and permissions. This
backend depends on the Python Idap module.

Note

LDAPBackend does not inherit from ModelBackend. It is possible to use LDAPBackend
exclusively by configuring it to draw group membership from the LDAP server. However, if
you would like to assign permissions to individual users or add users to groups within
Django, you’ll need to have both backends installed:

AUTHENTICATION_BACKENDS = (
'django.contrib.auth.contrib.ldap.backend.LDAPBackend’,
'django.contrib.auth.backends.ModelBackend',

Configuring basic authentication

If your LDAP server isn't running locally on the default port, you'll want to start by setting
AUTH LDAP SERVER URI to point to your server.

AUTH_LDAP_SERVER_URI = "ldap://ldap.example.com"

That done, the first step is to authenticate a username and password against the LDAP service. There
are two ways to do this, called search/bind and simply bind. The first one involves connecting to the
LDAP server either anonymously or with a fixed account and searching for the distinguished name of the
authenticating user. Then we can attempt to bind again with the user's password. The second method is
to derive the user's DN from his username and attempt to bind as the user directly.

Because LDAP searches appear elsewhere in the configuration, the LbAPSearch class is provided to
encapsulate search information. In this case, the filter parameter should contain the placeholder

% (user)s. A simple configuration for the search/bind approach looks like this (some defaults included
for completeness):

import ldap
from django.contrib.auth.contrib.ldap.config import LDAPSearch

AUTH_LDAP_BIND DN =

AUTH_LDAP_BIND_ PASSWORD = "'

AUTH_LDAP_USER_SEARCH = LDAPSearch("ou=users,dc=example,dc=com",
ldap.SCOPE_SUBTREE, "(uid=%(user)s)")

This will perform an anonymous bind, search under "ou=users,dc=example,dc=com" for an object
with a uid matching the user's name, and try to bind using that DN and the user's password. The search
must return exactly one result or authentication will fail. If you can't search anonymously, you can set
AUTH LDAP BIND DN to the distinguished name of an authorized user and

AUTH LDAP BIND PASSWORD to the password.

To skip the search phase, set AUTH LDAP USER DN TEMPLATE to a template that will produce the
authenticating user's DN directly. This template should have one placeholder, % (user)s. If the
previous example had used 1dap.SCOPE_ONELEVEL, the following would be a more straightforward
(and efficient) equivalent:

AUTH_LDAP_USER_DN_TEMPLATE = "uid=%(user)s,ou=users,dc=example,dc=com"

Working with groups

Working with groups in LDAP can be a tricky business, as there isn't a single standard grouping
mechanism. This module includes an extensible API for working with any kind of group and includes
implementations for the most common ones. LDAPGroupType is a base class whose concrete

Table Of Contents

= Authentication using LDAP
= Configuring basic authentication
= Working with groups
= User objects
Permissions
Logging
More options

Performance

Example configuration
API reference

= Configuration

= Backend

Browse

= Prev: Authenticating against Django’s
user database from Apache
= Next: Authentication using REMOTE_USER

You are here:

= Django v1.1 documentation
= “How-to” guides
= Authentication using LDAP

This Page

= Show Source

Quick search

Enter search terms or a module, class or function
name.

Last update:
Oct 23, 2009

file:///Users/psagers/Projects/django/trunk/docs/_build/html/index.html
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/apache-auth.html
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/index.html
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-remote-user.html
file:///Users/psagers/Projects/django/trunk/docs/_build/html/index.html
file:///Users/psagers/Projects/django/trunk/docs/_build/html/contents.html
file:///Users/psagers/Projects/django/trunk/docs/_build/html/genindex.html
file:///Users/psagers/Projects/django/trunk/docs/_build/html/modindex.html
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.backend.LDAPBackend
file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/settings.html#setting-AUTHENTICATION_BACKENDS
file:///Users/psagers/Projects/django/trunk/docs/_build/html/topics/auth.html#django.contrib.auth.models.User
http://www.python-ldap.org/
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.backend.LDAPBackend
file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/authbackends.html#django.contrib.auth.backends.ModelBackend
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.backend.LDAPBackend
file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/settings.html#setting-AUTH_LDAP_SERVER_URI
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.config.LDAPSearch
file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/settings.html#setting-AUTH_LDAP_BIND_DN
file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/settings.html#setting-AUTH_LDAP_BIND_PASSWORD
file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/settings.html#setting-AUTH_LDAP_USER_DN_TEMPLATE
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.config.LDAPGroupType
file:///Users/psagers/Projects/django/trunk/docs/_build/html/contents.html
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#configuring-basic-authentication
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#working-with-groups
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#user-objects
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#permissions
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#logging
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#more-options
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#performance
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#example-configuration
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#api-reference
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#module-django.contrib.auth.contrib.ldap.config
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#module-django.contrib.auth.contrib.ldap.backend
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/apache-auth.html
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-remote-user.html
file:///Users/psagers/Projects/django/trunk/docs/_build/html/index.html
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/index.html
file:///Users/psagers/Projects/django/trunk/docs/_build/html/_sources/howto/auth-ldap.txt

subclasses can determine group membership for particular grouping mechanisms. Three built-in
subclasses cover most grouping mechanisms:

" Po

ixGroupType

= MemberDNGroupType

= NestedMemberDNGroupType

posixGroup objects are somewhat specialized, so they get their own class. The other two cover
mechanisms whereby a group object stores a list of its members as distinguished names. This includes
groupOfNames, groupOfUniqueNames, and Active Directory groups, among others. The nested variant
allows groups to contain other groups, to as many levels as you like. For convenience and readability,
several trivial subclasses of the above are provided:

= GroupOfNamesType

®» NestedGroupOfNamesType

= GroupOfUniqueNamesType

= NestedGroupOfUniqueNamesType

m ActiveDirectoryGroupType

= NestedActiveDirectoryGroupType

To get started, you'll need to provide some basic information about your LDAP groups.

AUTH _LDAP GROUP_SEARCH is an LDAPSearch object that identifies the set of relevant group objects.
That is, all groups that users might belong to as well as any others that we might need to know about
(in the case of nested groups, for example). AUTH _LDAP GROUP_TYPE is an instance of the class
corresponding to the type of group that will be returned by AUTH LDAP_ GROUP_SEARCH. All groups
referenced elsewhere in the configuration must be of this type and part of the search results.

import ldap
from django.contrib.auth.contrib.ldap.config import LDAPSearch, GroupOfNamesType

AUTH_LDAP_GROUP_SEARCH = LDAPSearch("ou=groups,dc=example,dc=com",
ldap.SCOPE_SUBTREE, "(objectClass=groupOfNames)"

)
AUTH _LDAP_GROUP_TYPE = GroupOfNamesType ()

The simplest use of groups is to limit the users who are allowed to log in. If
AUTH LDAP REQUIRE GROUP is set, then only users who are members of that group will successfully
authenticate:

AUTH_LDAP_REQUIRE_GROUP = "cn=enabled,ou=groups,dc=example,dc=com"

More advanced uses of groups are covered in the next two sections.

User objects

Authenticating against an external source is swell, but Django's auth module is tightly bound to the
django.contrib.auth.models.User model. Thus, when a user logs in, we have to create a User
object to represent him in the database.

The only required field for a user is the username, which we obviously have. The User model is picky
about the characters allowed in usernames, so LDAPBackend includes a pair of hooks,
ldap_to_django_username() and django_to_ldap username(), to translate between LDAP
usernames and Django usernames. You'll need this, for example, if your LDAP names have periods in
them. You can subclass LDAPBackend to implement these hooks; by default the username is not
modified. User objects that are authenticated by LDAPBackend will have an 1dap_username attribute
with the original (LDAP) username. 1 e will, of course, be the Django username.

LDAP directories tend to contain much more information about users that you may wish to propagate. A
pair of settings, AUTH LDAP _USER_ATTR_MAP and AUTH LDAP PROFILE_ ATTR_MAP, serve to copy
directory information into U and profile objects. These are dictionaries that map user and profile
model keys, respectively, to LDAP attribute names:

AUTH_LDAP_USER_ATTR_MAP = {"first name": "givenName", "last _name": "sn"}
AUTH_LDAP_PROFILE_ATTR MAP = {"home_directory": "homeDirectory"}

Only string fields can be mapped to attributes. Boolean fields can be defined by group membership:

AUTH_LDAP_USER_FLAGS_BY GROUP = {

"is_active": "cn=active,ou=groups,dc=example,dc=com"”,
"is_staff": "cn=staff,ou=groups,dc=example,dc=com",
"is_ superuser": "cn=superuser,ou=groups,dc=example,dc=com"

file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.config.PosixGroupType
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.config.MemberDNGroupType
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.config.NestedMemberDNGroupType
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.config.GroupOfNamesType
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.config.NestedGroupOfNamesType
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.config.GroupOfUniqueNamesType
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.config.NestedGroupOfUniqueNamesType
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.config.ActiveDirectoryGroupType
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.config.NestedActiveDirectoryGroupType
file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/settings.html#setting-AUTH_LDAP_GROUP_SEARCH
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.config.LDAPSearch
file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/settings.html#setting-AUTH_LDAP_GROUP_TYPE
file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/settings.html#setting-AUTH_LDAP_GROUP_SEARCH
file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/settings.html#setting-AUTH_LDAP_REQUIRE_GROUP
file:///Users/psagers/Projects/django/trunk/docs/_build/html/topics/auth.html#django.contrib.auth.models.User
file:///Users/psagers/Projects/django/trunk/docs/_build/html/topics/auth.html#django.contrib.auth.models.User
file:///Users/psagers/Projects/django/trunk/docs/_build/html/topics/auth.html#django.contrib.auth.models.User
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.backend.LDAPBackend
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.backend.LDAPBackend.ldap_to_django_username
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.backend.LDAPBackend.django_to_ldap_username
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.backend.LDAPBackend
file:///Users/psagers/Projects/django/trunk/docs/_build/html/topics/auth.html#django.contrib.auth.models.User
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.backend.LDAPBackend
file:///Users/psagers/Projects/django/trunk/docs/_build/html/topics/auth.html#django.contrib.auth.models.User.username
file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/settings.html#setting-AUTH_LDAP_USER_ATTR_MAP
file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/settings.html#setting-AUTH_LDAP_PROFILE_ATTR_MAP
file:///Users/psagers/Projects/django/trunk/docs/_build/html/topics/auth.html#django.contrib.auth.models.User

By default, all mapped user fields will be updated each time the user logs in. To disable this, set
AUTH LDAP ALWAYS UPDATE USER to False.

If you need to access multi-value attributes or there is some other reason that the above is inadequate,
you can also access the user's raw LDAP attributes. user.ldap_user is an object with two public
properties:

= dn: The user's distinguished name.
= attrs: The user's LDAP attributes as a dictionary of lists of string values.

Python-ldap returns all attribute values as utf8-encoded strings. For convenience, this module will try to
decode all values into Unicode strings. Any string that can not be successfully decoded will be left as-is;
this may apply to binary values such as Active Directory's objectSid.

Note

Users created by LDAPBackend will have an unusable password set. This will only happen
when the user is created, so if you set a valid password in Django, the user will be able to
log in through ModelBackend (if configured) even if he is rejected by LDAP. This is not
generally recommended, but could be useful as a fail-safe for selected users in case the
LDAP server is unavailable.

Permissions

Groups are useful for more than just populating the user's is_* fields. LDAPBackend would not be
complete without some way to turn a user's LDAP group memberships into Django model permissions.
In fact, there are two ways to do this.

Ultimately, both mechanisms need some way to map LDAP groups to Django groups. Implementations
of LDAPGroupType Will have an algorithm for deriving the Django group name from the LDAP group.
Clients that need to modify this behavior can subclass the LDAPGroupType class. All of the built-in
implementations take a name_attr argumentto init__, which specifies the LDAP attribute from
which to take the Django group name. By default, the cn attribute is used.

The least invasive way to map group permissions is to set AUTH LDAP FIND GROUP_ PERMS to True
LDAPBackend will then find all of the LDAP groups that a user belongs to, map them to Django groups,
and load the permissions for those groups. You will need to create the Django groups yourself,
generally through the admin interface.

Note

After the user logs in, subsequent requests will have to determine group membership
based solely on the User object of the logged-in user. We will not have the user's
password at this point. This means that if AUTH LDAP FIND GROUP PERMS iS True, We
must have access to the LDAP directory through AUTH LDAP BIND DN and
AUTH LDAP BIND PASSWORD, even if you're using AUTH LDAP USER DN TEMPLATE to
authenticate the user.

To minimize traffic to the LDAP server, LDAPBackend can make use of Django's cache framework to
keep a copy of a user's LDAP group memberships. To enable this feature, set

AUTH LDAP CACHE GROUPS to True. You can also set AUTH LDAP GROUP CACHE TIMEOUT to
override the timeout of cache entries (in seconds).

AUTH_LDAP_CACHE_GROUPS =
AUTH_LDAP_GROUP_CACHE_TIMEOUT = 300

The second way to turn LDAP group memberships into permissions is to mirror the groups themselves.
If AUTH_LDAP_MIRROR_GROUPS is True, then every time a user logs in, LDAPBackend will update the
database with the user's LDAP groups. Any group that doesn't exist will be created and the user's
Django group membership will be updated to exactly match his LDAP group membership. Note that if
the LDAP server has nested groups, the Django database will end up with a flattened representation.

This approach has two main differences from AUTH _LDAP FIND GROUP_ PERMS. First,

AUTH LDAP FIND GROUP PERMS will query for LDAP group membership either for every request or
according to the cache timeout. With group mirroring, membership will be updated when the user
authenticates. This may not be appropriate for sites with long session timeouts. The second difference is
that with AUTH LDAP FIND GROUP PERMS, there is no way for clients to determine a user's group
memberships, only their permissions. If you want to make decisions based directly on group
membership, you'll have to mirror the groups.

file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/settings.html#setting-AUTH_LDAP_ALWAYS_UPDATE_USER
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.backend.LDAPBackend
file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/authbackends.html#django.contrib.auth.backends.ModelBackend
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.backend.LDAPBackend
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.config.LDAPGroupType
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.config.LDAPGroupType
file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/settings.html#setting-AUTH_LDAP_FIND_GROUP_PERMS
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.backend.LDAPBackend
file:///Users/psagers/Projects/django/trunk/docs/_build/html/topics/auth.html#django.contrib.auth.models.User
file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/settings.html#setting-AUTH_LDAP_FIND_GROUP_PERMS
file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/settings.html#setting-AUTH_LDAP_BIND_DN
file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/settings.html#setting-AUTH_LDAP_BIND_PASSWORD
file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/settings.html#setting-AUTH_LDAP_USER_DN_TEMPLATE
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.backend.LDAPBackend
file:///Users/psagers/Projects/django/trunk/docs/_build/html/topics/cache.html#topics-cache
file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/settings.html#setting-AUTH_LDAP_CACHE_GROUPS
file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/settings.html#setting-AUTH_LDAP_GROUP_CACHE_TIMEOUT
file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/settings.html#setting-AUTH_LDAP_MIRROR_GROUPS
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.backend.LDAPBackend
file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/settings.html#setting-AUTH_LDAP_FIND_GROUP_PERMS
file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/settings.html#setting-AUTH_LDAP_FIND_GROUP_PERMS
file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/settings.html#setting-AUTH_LDAP_FIND_GROUP_PERMS

Logging

LDAPBackend uses the standard logging module to log debug and warning messages to the logger
named 'django.contrib.auth.contrib.ldap'. If you need debug messages to help with
configuration issues, you should add a handler to this logger.

More options

Miscellaneous settings for LDAPBackend:

= AUTH LDAP GLOBAL OPTIONS: A dictionary of options to pass to python-ldap via
ldap.set_option().

" AUTH LDAP CONNECTION OPTIONS: A dictionary of options to pass to each LDAPObject instance
via LDAPObject.set_option().

Performance

L | is carefully designed not to require a connection to the LDAP service for every request.
Of course, this depends heavily on how it is configured. If LDAP traffic or latency is a concern for your
deployment, this section has a few tips on minimizing it, in decreasing order of impact.

1. Cache groups. If AUTH LDAP FIND GROUP PERMS is True, the default behavior is to reload a
user's group memberships on every request. This is the safest behavior, as any membership
change takes effect immediately, but it is expensive. If possible, set AUTH LDAP CACHE GROUPS
to True to remove most of this traffic. Alternatively, you might consider using
AUTH_LDAP_MIRROR_GROUPS and relying on ModelBackend to supply group permissions.

2. Don't access user.ldap_user.*. These properties are only cached on a per-request basis. If you
can propagate LDAP attributes to a t or profile object, they will only be updated at login.
user.ldap_user.attrs triggers an LDAP connection for every request in which it's accessed. If
you're not using AUTH LDAP USER DN TEMPLATE, then accessing user.ldap user.dn will also
trigger an LDAP connection.

3. Use simpler group types. Some grouping mechanisms are more expensive than others. This will
often be outside your control, but it's important to note that the extra functionality of more
complex group types like NestedGroupOfNamesType is not free and will generally require a
greater number and complexity of LDAP queries.

4. Use direct binding. Binding with AUTH LDAP USER DN TEMPLATE is a little bit more efficient
than relying on AUTH _LDAP USER_SEARCH. Specifically, it saves two LDAP operations (one bind
and one search) per login.

Example configuration

Here is a complete example configuration from settings.py that exercises nearly all of the features.
In this example, we're authenticating against a global pool of users in the directory, but we have a
special area set aside for Django groups (ou=django,ou=groups,dc=example,dc=com). Remember that
most of this is optional if you just need simple authentication. Some default settings and arguments are
included for completeness.

import ldap
from django.contrib.auth.contrib.ldap.config import LDAPSearch, GroupOfNamesType

AUTH_LDAP_SERVER_URI = "ldap://ldap.example.com"

AUTH_LDAP_BIND_DN = "cn=django-agent,dc=example,dc=com"

AUTH_LDAP_BIND_PASSWORD = 'phlebotinum”

AUTH_LDAP_USER_SEARCH = LDAPSearch("ou=users,dc=example,dc=com",
ldap.SCOPE_SUBTREE, ' (uid=%(user)s)")

AUTH_LDAP_GROUP_SEARCH = LDAPSearch("ou=django,ou=groups,dc=example,dc=com",
ldap.SCOPE_SUBTREE, "(objectClass=groupOfNames)"

)
AUTH_LDAP_GROUP_TYPE = GroupOfNamesType(name_attr="cn")

AUTH_LDAP_REQUIRE_GROUP = "cn=enabled,ou=django,ou=groups,dc=example,dc=com"

AUTH_LDAP_USER_ATTR _MAP = {
"first_name": "givenName",

file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.backend.LDAPBackend
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.backend.LDAPBackend
file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/settings.html#setting-AUTH_LDAP_GLOBAL_OPTIONS
file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/settings.html#setting-AUTH_LDAP_CONNECTION_OPTIONS
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.backend.LDAPBackend
file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/settings.html#setting-AUTH_LDAP_FIND_GROUP_PERMS
file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/settings.html#setting-AUTH_LDAP_CACHE_GROUPS
file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/settings.html#setting-AUTH_LDAP_MIRROR_GROUPS
file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/authbackends.html#django.contrib.auth.backends.ModelBackend
file:///Users/psagers/Projects/django/trunk/docs/_build/html/topics/auth.html#django.contrib.auth.models.User
file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/settings.html#setting-AUTH_LDAP_USER_DN_TEMPLATE
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.config.NestedGroupOfNamesType
file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/settings.html#setting-AUTH_LDAP_USER_DN_TEMPLATE
file:///Users/psagers/Projects/django/trunk/docs/_build/html/ref/settings.html#setting-AUTH_LDAP_USER_SEARCH

"last name": "sn",
"email": "mail"

}
AUTH_LDAP_PROFILE_ATTR_MAP = {
"employee number": "employeeNumber"
}
AUTH_LDAP_USER_FLAGS_BY_GROUP = {
"is_active": "cn=active,ou=django,ou=groups,dc=example,dc=com"”,
"is_staff": "cn=staff,ou=django,ou=groups,dc=example,dc=com",
"is superuser": "cn=superuser,ou=django,ou=groups,dc=example,dc=conm"

AUTH_LDAP_ALWAYS_UPDATE_USER =
AUTH_LDAP_FIND_GROUP_PERMS =

AUTH_LDAP_CACHE_GROUPS =
AUTH_LDAP_GROUP_CACHE_TIMEOUT = 3600

AUTHENTICATION_BACKENDS = (
'django.contrib.auth.contrib.ldap.backend.LDAPBackend',
'django.contrib.auth.backends.ModelBackend',

APl reference

Configuration

class LDAPSearch
__init__(base_dn, scope, filterstr="(objectClass=%*)")
= base dn: The distinguished name of the search base.

= scope: One of 1dap.SCOPE_*.

= filterstr: An optional filter string (e.g. '(objectClass=person)'). In order to be valid,
filterstr must be enclosed in parentheses.

class LDAPGroupType

The base class for objects that will determine group membership for various LDAP grouping
mechanisms. Implementations are provided for common group types or you can write your own. See
the source code for subclassing notes.

__init__ (name_attr="'cn’)
By default, LDAP groups will be mapped to Django groups by taking the first value of the cn
attribute. You can specify a different attribute with name_attr.

class PosixGroupType

A concrete subclass of LDAPGroupType that handles the posixGroup object class. This checks for
both primary group and group membership.

__init__ (name_attr="'cn’)

class MemberDNGroupType

A concrete subclass of Type that handles grouping mechanisms wherein the group object

contains a list of its member DNs.

__init__ (member_attr, name_attr="'cn’)

= member attr: The attribute on the group object that contains a list of member DNs.
'member' and 'uniqueMember' are common examples.

class NestedMemberDNGroupType

file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.config.LDAPGroupType
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.config.LDAPGroupType

Similar to MemberDNGroupType, except this allows groups to contain other groups as members.
Group hierarchies will be traversed to determine membership.

__init__(member_attr, name_attr="cn")
As above.

class GroupOfNamesType

A concrete subclass of MemberDNGroupType that handles the groupofNames object class.
Equivalent to MemberDNGroupType ('member').

__init__(name_attr="'cn")

class NestedGroupOfNamesType

A concrete subclass of NestedMemberDNGroupType that handles the groupofNames object class.
Equivalent to NestedMemberDNGroupType ('member').

__init__(name_attr="'cn")
class GroupOofUniqueNamesType

A concrete subclass of MemberDNGroupType that handles the groupOfUniqueNames object class.
Equivalent to MemberDNGroupType ('uniqueMember').

__init__(name_attr="'cn")

class NestedGroupOfUniqueNamesType

A concrete subclass of NestedMemberDNGroupType that handles the groupofUniqueNames object
class. Equivalent to NestedMemberDNGroupType ('uniqueMember').

__init__(name_attr="'cn’)

class ActiveDirectoryGroupType

A concrete subclass of MemberDNGroupType that handles Active Directory groups. Equivalent to
MemberDNGroupType('member').

__init__ (name_attr="'cn’)

class NestedActiveDirectoryGroupType

A concrete subclass of NestedMemberDNGroupType that handles Active Directory groups. Equivalent
to NestedMemberDNGroupType ('member').

__init__(name_attr="'cn’)

Backend

class LDAPBackend

ldap_to_django_username(username)
Returns a valid Django username based on the given LDAP username (which is what the user
enters). By default, username is returned unchanged. This can be overriden by subclasses.

django_to_ldap_username(username)
The inverse of 1dap to _dijango_username (). If this is not symmetrical to
ldap to django username (), the behavior is undefined.

previous

up

file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/apache-auth.html
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/index.html
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-remote-user.html
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.config.MemberDNGroupType
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.config.MemberDNGroupType
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.config.NestedMemberDNGroupType
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.config.MemberDNGroupType
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.config.NestedMemberDNGroupType
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.config.MemberDNGroupType
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.config.NestedMemberDNGroupType
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.backend.LDAPBackend.ldap_to_django_username
file:///Users/psagers/Projects/django/trunk/docs/_build/html/howto/auth-ldap.html#django.contrib.auth.contrib.ldap.backend.LDAPBackend.ldap_to_django_username

